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Patterns of cross-correlation in time series: A case study of gait trails∗

Jia Song(宋佳), Tong-Feng Weng(翁同峰), Chang-Gui Gu(顾长贵), and Hui-Jie Yang(杨会杰)†

Business School, University of Shanghai for Science and Technology, Shanghai 200082, China

(Received 1 February 2020; revised manuscript received 8 May 2020; accepted manuscript online 13 May 2020)

A complex system contains generally many elements that are networked by their couplings. The time series of output
records of the system’s dynamical process is subsequently a cooperative result of the couplings. Discovering the coupling
structure stored in the time series is an essential task in time series analysis. However, in the currently used methods for
time series analysis the structural information is merged completely by the procedure of statistical average. We propose
a concept called mode network to preserve the structural information. Firstly, a time series is decomposed into intrinsic
mode functions and residue by means of the empirical mode decomposition solution. The mode functions are employed to
represent the contributions from different elements of the system. Each mode function is regarded as a mono-variate time
series. All the mode functions form a multivariate time series. Secondly, the co-occurrences between all the mode functions
are then used to construct a threshold network (mode network) to display the coupling structure. This method is illustrated
by investigating gait time series. It is found that a walk trial can be separated into three stages. In the beginning stage, the
residue component dominates the series, which is replaced by the mode function numbered M14 with peaks covering ∼680
strides (∼12 min) in the second stage. In the final stage more and more mode functions join into the backbone. The changes
of coupling structure are mainly induced by the co-occurrent strengths of the mode functions numbered as M11, M12, M13,
and M14, with peaks covering 200–700 strides. Hence, the mode network can display the rich and dynamical patterns of the
coupling structure. This approach can be extended to investigate other complex systems such as the oil price and the stock
market price series.
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1. Introduction

Records of dynamical process of a complex system form
a sequential series. Time series analysis tries to discover non-
trivial information from the series. It can not only shed light on
the underlying dynamical mechanism, but also provide infor-
mation for prediction, regulation and even control.[1] A time
series is generally a result of couplings between many ele-
ments. For instance, a person’s walk is realized by the coop-
eration of the heart, lung, neural system and brain, etc.[2] The
gait time series contains subsequently many components that
come from the organs and their interactions. Each organ has its
own dynamical behaviors such as the characteristic frequency
and the specific mechanism in coupling with the other organs.
The cross correlation between the components has generally
a complicated and dynamical pattern. However, in the stan-
dard tools in literature, the statistical properties of moments
and short/long-term persistence are obtained with the statisti-
cal average. This procedure of average dismissed completely
the rich patterns.

In this paper, a new concept is proposed to preserve the
patterns of cross correlation in time series. The method is
illustrated with a case study of gait time series. Firstly, the
empirical mode decomposition (EMD)[3] is adopted to obtain

the modes (intrinsic mode functions (IMFs) and residue) in

gait time series. The modes form a multivariate time series.

Each mode is here represented with a variable. Secondly, the

multivariate series is cut into non-overlapping segments with

a specific length. For each segment, the overlapping degree

between each pair of modes is calculated to measure the co-

occurrent relationship between them. The co-occurrences be-

tween all the pairs of modes form a relationship matrix, which

is employed to describe the state of the volunteer in the corre-

sponding time duration. Thirdly, a threshold is then introduced

to filter out the weak relationships, which results into a com-

plex network.[4,5] All the networks form a series of networks

(temporal network) that present us the kinetic trajectory of the

volunteer’s walk.

It is found that with the increase of time, the network

structure formed by the patterns of co-occurrence of modes

becomes more and more complicated. According to the fluc-

tuation of number of edges, the walk trial is separated into

three stages. The core of the mode network (backbone formed

by hubs and strong linkages) changes in the number of hubs

and the position on the network.
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2. Materials and methods
2.1. Data

The recordings for the trails of long-term gait dynam-
ics are downloaded from the public accessible free-database
of PhysioBank.[6] A total of ten healthy subjects take part
in the experiment. The subjects do not have any history
of neuromuscular, respiratory or cardiovascular disease and
are not taking any medication. The average age, height and
weight are 21.7 years (range: 18–29 years), 1.77± 0.08 m
and 71.8±10.7 kg (±standard deviation), respectively. An in-
formed written consent is attached for each subject.

Each volunteer walks three times at normal, slow and fast
paces, respectively. Each walk continues about one hour. The
path is a long (225 m or 400 m) and approximately ellipti-
cal loop on a flat, unobstructed area. An ultra-thin and force-
sensitive switch is affixed in a shoe to record the stride interval.
The experiment provides subsequently a total of 30 recordings
of trials. In this study, the recordings for seven volunteers (to-
tally 21 trials) are considered, their identification numbers are
1, 2, 3, 6, 7, 8 and 9 in the database. The other trials are not
considered because the EMD method fails in obtaining the rel-
evant modes from these trails.

2.2. Empirical mode decomposition

Huang et al.[3] proposed initially the empirical mode de-
composition (EMD) to separate a signal into intrinsic mode
functions and residue. An intrinsic mode function (IMF)
should be a series that meets two criterions. The one is that
the number of extreme values and the number of zero cross-
ings are equal or at most one different. The other is that at
any time, the average between the upper envelope formed by
the local maxima and the lower envelope formed by the local
minima is zero. To be as self-contained as possible, the rele-
vant algorithm is described briefly. Let us consider a gait time
series denoted with X(t), t = 1,2, . . . ,T .

Step 1 One identifies all the maxima and minima and
links them, which results in the upper envelop Xmax(t) and
the lower envelop Xmin(t), respectively. The difference signal
h(t) is calculated by subtracting the mean of the two envelopes
from the original gait signal, which reads

h(t) = X(t)− Xmax(t)+Xmin(t)
2

. (1)

Step 2 The above step is repeated until the resulting se-
ries of h(t) meets the definition of IMF. At the same time, the
IMF should retain sufficient physical amplitude and frequency
adjustment. This requirement is realized by limiting the value
of the normalized squared difference

D =
T

∑
t=0

|hk−1(t)−hk(t)|2

h2
k−1(t)

(2)

in a specified interval. Here hk(t) is the difference signal h(t)
obtained at the kth repeat round. In practice, the value of D
is currently selected in the region of [0.2,0.3]. The resulting
series is the first IMF, denoted with M1(t).

Step 3 Subtracting from the original gait time series the
first IMF, conduction of the first two steps on the resulting se-
ries produces the second IMF, denoted with M2(t).

Step 4 Subtracting from the initial gait time series X(t)
the obtained IMFs (denoted with M1(t),M2(t), . . . ,Mm(t)),
conduction of the first two steps on the resulting time series
produces the (m+1)th component, denoted with Mm+1(t).

The original gait time series can be reconstructed by the
following formula,

X(t) =
L

∑
m=1

Mm(t)+R(t), (3)

where L is the total number of IMFs, R is the remaining term
that is less than a predefined value induced by the D criterion
in step 2. By this way the original signal X(t) is separated
into a total of L intrinsic mode functions. Each of the IMFs
has a distinct time scale, namely, the peaks along the series
have roughly a characteristic width. The main merit of EMD
is that the calculation formulas come from the original gait
time series itself. The formulas can adapt automatically to the
changes in the gait time series, which cannot be realized by
the fixed ones in the other traditional methods.

2.3. Mode network

Herein a new concept called mode network is proposed
to illustrate the co-occurrence of the intrinsic mode functions
and the remaining term, and its evolutionary behavior.[7,8] For
simplicity, the remaining term R(t) (residue) is treated as the
ML+1(t). The formula of original gait time series X(t) is al-
tered to

X(t) =
L+1

∑
m=1

Mm(t). (4)

All the modes form a multivariate (a total of L+ 1 variables
and the length is T ) time series M, whose entities read

M(m, t)≡Mm(t),

m = 1,2, . . . , L+1; t = 1,2, . . . ,T. (5)

The time series is then cut into a total of [T
w ] non-overlapping

segments, which read

M j = {M(m,k), m = 1,2, . . . , L+1;

k = ( j−1)w+1, ( j−1)w+2, . . . , jw}
j = 1,2, . . . , [T/w]. (6)

Here [·] is the integer part of a real number, and w the specified
length of the segments.
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The co-occurrence between each pair of the IMFs and
residue in the jth segment is measured by the overlapping de-
gree,

C j(m,n) =
jw

∑
t=( j−1)w+1

|Mm(t) ·Mn(t)|,

m = 1,2, . . . ,L+1; n = 1,2, . . . ,L+1. (7)

This equation is similar to dot product of vectors, and | · | is
the absolute value. A larger C j(m,n) implies a closer relation-
ship between the modes Mm(t) and Mn(t). The matrix C j is
a (L+ 1)× (L+ 1) weighted network. The original gait time
series X(t) is converted by this way into a series (temporal
network) of C j, j = 1,2, . . . , [T/w].

To expose the backbones of the mode networks, one usu-
ally tries to filter out the weak (low-confident) linkages. Sev-
eral ideas in literature are stimulating.[9,10] Sometimes, there
exists a wide specific range of coupling strength, the networks
constructed with thresholds selected exhibit qualitatively sim-
ilar behaviors.[11] Every node is linked with a certain num-
ber of its closest neighbors.[12] Or one tries to embed the net-
work in a two-dimensional plane, at the same time to preserve
the linkages as possible.[13] In the present study, there ap-
pears a crossover in the distribution function of co-occurrence
strengthes. The threshold θ is selected to be the strength at the
cross-over point, i.e., the linkages whose weights are larger
than the critical point θ are preserved and the others filtered
out.

The selection of the segment length w should meet several
requirements. Firstly, it should be long enough to make sure
that the calculated co-occurrence strength has an acceptable
sharp confidence interval. It should be short enough to make
sure that in the covered time duration the physiological state
keeps unchanged, so that the mode network can represent the
state. Obviously, it also depends on the time scale of the in-
terested properties of the walk progress. In the present work,
the segment width w is chosen to be 112 strides. The time
covered by these stride is about 2 min, in which the physiolog-
ical state generally does not change significantly for a health
volunteer. Mathematically, the sample is enough to guaran-
tee a sharp confidence interval of co-occurrent strength (esti-
mated with the definition in this study), as mentioned in the
literature.[14] The reason why the specific value of 112 is se-
lected rather than the other values of ∼ 100 is that this length
can separate the series with only a few records lost.

3. Results
Using the trials mentioned in the subsection 2.1, Haus-

dorrf et al. confirmed for the first time that the fractal property
in stride interval series of human walking is robust and inher-
ent to the motion system,[15,16] which led to extensive works

on nonlinear dynamical models for human locomotion.[17]

The fractal property of human walking implies that the stride
interval exhibits long-range power-law correlations. Herein,
the constructed mode networks will display further the struc-
ture of the correlation and its evolutionary behavior. The typ-
ical results for the normal stride interval series for the volun-
teer numbered 1 are provided. The results for the fast and slow
trials of this volunteer can be found in the Supplementary Ma-
terials, and that for the other trials are not shown.

The top panel numbered “Raw” in Fig. 1 shows the series
of normal stride interval. A normalization procedure is con-
ducted, i.e., from the original series one subtracts the average
and divides subsequently the resulting series by its standard
deviation. The initial series contains a total of 3371 intervals,
the first to the 3360th elements are depicted (T = 3360). This
series turns out to contain a total of L = 16 intrinsic modes
(see the panels M1,M2, . . . ,M16 in Fig. 1) and the residue (see
the panel M17 in Fig. 1). Intuitively, from M1 to M16 the mode
becomes more and more smoothly. Though each mode has not
a characteristic oscillating frequency, its characteristic can be
measured roughly by a typical width of peaks along the series.
It is difficult to distinguish the modes M1 and M2 from noise.
The residue (M17) has the monotonic characteristic.
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Fig. 1. Intrinsic modes in the records of normal stride intervals for the
volunteer numbered 1. “Raw”, the normalized stride interval series. M1
to M17, the total of 16 intrinsic modes and the residual series obtained
with the empirical mode decomposition algorithm (EMD).

The normalized gait series is then converted to a multi-
variate series with 17 variables, and divided further into a total
of 30 segments with length of w = 112 each (see the above
explanation). The mode network series reads C j

17×17, j =
1,2, . . . ,30. To find a threshold to filter out the weak co-
occurrence strengths, the distribution of the weights (overlap-
ping degrees) is presented in Fig. 2(a), the log-log graph is
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shown in Fig. 2(b). One can find a critical point of 0.23, which
separates the distribution curve into two branches that obey
power laws with significantly different scaling exponents. It
is reasonable to believe that the reliable weights are strong
and obey an identical distribution law. In addition, the occur-
ring probability of the weights larger than 0.23 is around 5%.
Hence, the threshold is assigned to be θ = 0.23. The weights
larger than θ are preserved, while the others are replaced with
zero.

Figure 3 shows the constructed temporal network.[18,19] A
total of 5 mode networks (C6, C12, C18, C21, and C23) are not

shown, because they do not contain relevant weights. Herein

the pattern formed by strongly linked modes is called back-

bone. With the increasing time the mode network contains

more and more edges, whose backbone is dominated subse-

quently by more and more hubs and linkages. The backbone

is absent in the durations from C5 to C6, from C10 to C11 and

C15. It initially contains the mode numbered 17 alone (from

C1 to C4), which is then replaced by the mode numbered 14

(from C7 to C13). From C14 there appear more and more hubs

linked by strong linkages.
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Fig. 2. The statistical behaviors of the co-occurrences between the IMFs and residue. (a) The histogram of the co-occurrence distribution. (b)
The log-log graph of the co-occurrence distribution. The vertical dotted line separates the co-occurrences into two sets, which obey power laws
with significantly different scaling exponents.

 C1  C2  C3  C4  C5

 C7  C9  C10  C11 C8

 C13  C14  C17 C16 C15

 C19  C20  C25 C24 C22

 C26  C28  C30 C29 C27

Fig. 3. The series of mode network (temporal network). A total of 25 mode networks out of the total of 30 ones are displayed. The other five
mode networks are not shown, because there all the co-occurrences in them are less than the threshold θ = 0.23. The thickness of an edge is
proportional to its weight and the size of a node is proportional to the summation of weights of its neighbors.

Herein, the heat map is employed to display the evolu-

tionary behavior of the backbone structure. To expose the

evolutionary behavior, the linkages should be arranged in a

specific order, in which the evolutionary behaviors of a pair of

linkages are much more similar when they are positioned more

closely. After filtering out the weak co-occurrent strengths
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with the threshold θ , a total of 70 linkages is preserved. The
criterion for a linkage preserved is that it occurs at least in
one of the mode networks C j, j = 1,2, . . . ,30. Firstly, for
each linkage one collects the weights in the 30 mode net-
works. The resulting weight series describes the linkage’s
evolution. Secondly, the correlation coefficients between the
linkage weight series are calculated. Thirdly, the hierarchi-
cal clustering method is used to construct a clustering tree of
the linkages (shown in Fig. 1 in the Supplementary Materials).
Finally, a simple rule is used to assign the identification num-
bers, namely, the closer a pair of linkages are in the clustering-
tree, the closer their identification numbers are. By this way,
one can find the non-trivial patterns in the map. The result-
ing assignments of linkage identification numbers are shown
in Fig. 4(a). To cite an example, the identification number
for the linkage between the modes numbered 11 and 5 is the
entity at the 11th row and the 5th column, namely, 36. The
evolutionary behaviors of the linkages are presented with a
heat map in Fig. 4(b). One can easily find the change trend
of mode networks, i.e., the amount of edges with bright color
increases, and the set of nodes and linkages that form the back-
bone changes.
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Fig. 4. Evolution of the linkages. (a) Each pair of modes is labeled
with a specific identification number from 1 to 70, as described in the
text part. (b) The evolution of linkage’s weights is displayed with a
heat map. The horizontal and vertical axes represent the mode network
series C j

17×17, j = 1,2, . . . ,30 and the 70 edges, respectively.

The summation of linkage weights that are larger than θ

in the mode network is used to measure the global coupling
strength, as shown in Fig. 5(a), i.e., its evolution along with
time (the mode network identification number). The process
can be separated into three stages. Here, the first two mode

networks are ignored, because the volunteer may need some
time to adapt to the trial.
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Fig. 5. Evolutionary behavior of the mode network. (a) The global
overlapping degree (summation of link’s weights that larger than 0.23)
versus the identification number of mode network (time). (b) Average
and error for every linkage that are shown in the heat-map in Fig. 4(b).
The identification number is defined in Fig. 4(a).

The first stage is the duration from the 3rd to the 12th net-
work (which covers about 1/3 of the total stride time). In this
stage, there are a few numbers of edges. That is, only a few of
modes dominate the state of the volunteer. Accompanied with
Fig. 3, one can find that the modes numbered 14 and 17 play
key roles in this stage.

The second stage starts from the 13th and ends at the 23rd

network (which covers about 1/3 of the total stride time). In
this stage co-occurrence strength becomes strong and fluctu-
ates with large amplitudes. The 1st, 13th, 14th and 16th modes
appear in almost all the mode networks, while the 2nd, 4th,
9th, 11th, 12th and 15th modes just take part in several mode
networks.

The last stage covers the mode networks from the 23rd to
the end one (which covers about 1/3 of the total stride time).
The number of edges increases rapidly, and more and more
modes become important in the backbone.

The average for every linkage over the 30 mode networks
and its error bar are displayed in Fig. 5(b), to find the persis-
tent strong/weak linkages (large/small mean with small error)
and the active linkages (large error). The persistent and strong
linkages such as the 53rd and 56th linkages form the unchange
part of the backbone. The persistent and weak linkages such
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as the 1st to the 9th, the 13th and the 51st linkages are absent in
almost all the mode networks. The change of mode network
with time is induced mainly by the active linkages, e.g., the
27th, 31st and 60th linkages. Herein an active linkage implies
that its error is more than a standard deviation larger than its
mean.[20]

To display the change of the set of linkages and modes
that form the backbone, two statistic properties of each mode
are calculated, namely, the degree (amount of its connected
neighbors) and the average of the shortest paths from it to all

the other modes.[21,22] A node can be selected to be the ker-
nel if it has the largest degree and the smallest average short-
est paths. A total of 25 ego networks centered at the kernels
are constructed, as shown in Fig. 6. The ego network series
can clearly display the specific set of modes and linkages that
plays a relatively important role in correspondent mode net-
work, and subsequently show us evolutionary behavior of the
volunteer’s physiological state. For instance, at the beginning
the 17th mode (the residue) is the kernel, which is replaced by
the 14th mode after several series segments.

 C26  C28  C30 C29 C27

 C19  C20  C25 C24 C22

 C13  C14  C17 C16 C15

 C7  C9  C10  C11 C8

 C1  C2  C3  C4  C5

Fig. 6. Ego networks for the kernels. The nodes with red color are kernels. The other nodes with deep blue color are alters.

Summarily, the backbone of mode network structure is
significantly different in the three stages, and displays the
complicated evolutionary behavior of the physiological state
in the walking. However, this rich information on physiologi-
cal state and its evolution is lost in the the detections of fractal,
chaotic, and short-term persist behaviors.

4. Conclusion and discussion
A complex system consists of many elements, between

which there exist complicated couplings. The time series of
output records for a specific element is actually a cooperative
result of all the elements’ dynamical processes. The contribu-
tions to the time series from the other elements have different
behaviors that are determined by the coupling strengths and
patterns and the working mechanisms of the elements. Though
there exist many elements, in reality the number of elements
that can be monitored is limited (only one or several signals

can be measured). Hence, how to detect the coupling pattern
from a mono-variate time series is an essential task in time
series analysis. It can tell us how the different elements co-
operate with each other, and what happens in a specific time
duration in the dynamical process. However, the information
on this coupling structure is lost completely in the currently
used time series analysis due to the procedure of statistical av-
erage.

In the present study a new concept called mode network is
designed to preserve the coupling structure in a mono-variate
time series. It is realized by two successive steps. The first is
to decompose the time series into many intrinsic mode func-
tions by means of the empirical mode decomposition. Each of
the intrinsic mode functions is a mono-variate time series used
to represent the contribution from a specific element. All the
mode functions form a multivariate time series. The second
is to calculate the co-occurrent strengths between the mode
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functions in time durations with a specific length. A thresh-
old is then determined to map the co-occurrent matrices into
a temporal network, in which each mode function is a node
and the co-occurrent strength between a pair of mode func-
tions is the weight of linkage. The backbone that consists of
the strong linkages and the corresponding mode functions are
used to characterize the coupling structure and its evolution.

This approach is illustrated by a typical example of gait
time series. In a walk trial, the physiological state of a vol-
unteer evolves in a complicated way. For instance, in the
case shown in the result section, the walk can be separated
into three stages. The first stage is dominated by the residue,
which can be regarded as a constant in the interested time
scale (minute), which is taken over in the middle stage by
the mode function with peaks covering ∼10 min. In the fi-
nal stage the physiological state becomes more and compli-
cated, i.e., more and more mode functions participate in the
formation of the backbone. The traditional methods such as
the de-trended fluctuation analysis, the wavelet transformation
maximum module and the diffusion entropy approach gave
controversial conclusions.[23,24] The key assumption in these
methods is that the physiological state does not change and
obey accordingly an identical law, which is not met as found
in this study. It is also found that the change of physiological
state is induced mainly by the co-occurrent strengths between
the mode functions numbered M11, M12, M13, and M14, whose
peaks cover a wide range from 200 to 700 (about 3–12 min).

A natural question is how to understand these findings
from the viewpoint of physiology, i.e., what can the findings
tell us on the physiological state of the volunteer? It is widely
accepted that the IMFs reflect the contributions from differ-
ent elements of a complex system. This idea is usually il-
lustrated in textbooks with the series synthesized with peri-
odic signals at different frequencies (components). However,
the relation between the modes and the components used in
the synthetic procedure becomes complicated and non-trivial,
when the components are not periodic ones. To our knowl-
edge, there is not report in literature that gives a clear rela-
tion between the contributions of organs and the intrinsic mode
functions in a walk trial. It is still an open problem.

Some interesting works in literature on the same walk
trials show that, in about one hour walk the dynamical
mechanism of the motor nervous system (measured by the
scale-invariant exponent of time series) can be separated into
three stages with significantly different values of the Hurst
exponent.[25–28] This finding is consistent with our findings
in this study. Hence, it is reasonable to say that the evolution-
ary behavior of mode network is produced by the dynamical
mechanism of walk.

In literature, the empirical decomposition is widely used
to classify the gait patterns, e.g., to distinguish patients with

Parkinson’s disease from healthy controls.[29] The key idea is
to use the IMFs to construct a gait feature vector to represent
the behavior of the corresponding individual. Then all kinds of
classifiers (e.g., the neural network) are employed to separate
the feature vectors into different groups. The mode network in
this study provides a matrix of relationships between the IMFs
modes, rather than a simple list of IMFs in the feature vec-
tor. What is more, our findings show that even for an identical
healthy volunteer its physiological state will change signifi-
cantly along time in a walk trial. Our investigation may find
its applications in wearable devices to monitor healthy state in
a real-time way.

In literature, there exist some standard decomposition
methods to decompose time series into different components,
such as the Fourier transformation and the wavelet transforma-
tion. The empirical mode has also been modified to improve
its performance.[30] In the present work the original version
of the empirical mode decomposition is employed to illustrate
the proposed framework. It is worth testing the performance
of the other decomposition methods in future works.

An interesting topic developed in recent years is the net-
work based time series analysis.[31] The basic idea is to rep-
resent the patterns in time series with network and compare
the constructed networks to find differences between time
series[4,5,32–36] or to monitor the evolutionary behavior of a
complex system.[37–39] We hope our work can stimulate de-
tailed and systematic works on preserving patterns of cross
correlation in records of dynamical processes of complex sys-
tems, such as the oil and stock market price series.
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